Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 15(21): 12171-12191, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37925172

RESUMO

Hepatocellular carcinoma (HCC) is a significant global health concern as it ranks as the sixth most common malignant tumor and the third leading cause of cancer-related deaths. In this study, we analyzed the expression of centromere protein B (CENPB) mRNA in HCC using TCGA and GEO datasets. Immunohistochemistry (IHC) was performed to determine CENPB protein levels in 490 HCC patients. Our findings revealed higher expression of CENPB mRNA in HCC tissues across the three datasets. Additionally, as the pathological stage and histological grade advanced, CENPB expression increased. Patients with elevated levels of CENPB mRNA and protein demonstrated shorter overall survival (OS) and recurrence-free survival (OS). Notably, CENPB protein showed prognostic value in patients with stage I/II, AFP levels below 400 ng/ml, and tumor size less than 5 cm. Using multivariate regression analysis in 490 HCC patients, we developed nomograms to predict 1-year, 3-year, and 5-year OS and RFS. Knockdown of CENPB in Hep3B and MHCC97 cell lines resulted in significant inhibition of cell proliferation and invasion. Furthermore, bioinformatics analysis identified miR-29a as a potential negative regulator of CENPB expression, which was validated through a dual-luciferase reporter assay. In conclusion, our findings suggest that CENPB may serve as an oncogenic factor in HCC and is directly regulated by miR-29a, highlighting its potential as a promising therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , RNA Mensageiro , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Cells ; 11(9)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35563684

RESUMO

Human artificial chromosomes (HACs) can be formed de novo by introducing large (>30 kb) centromeric sequences consisting of highly repeated 171-bp alpha satellite (alphoid) DNA into HT1080 cells. However, only a subset of transformed cells successfully establishes HACs. CENP-A chromatin and heterochromatin assemble on the HACs and play crucial roles in chromosome segregation. The CENP-B protein, which binds a 17-bp motif (CENP-B box) in the alphoid DNA, functions in the formation of alternative CENP-A chromatin or heterochromatin states. A balance in the coordinated assembly of these chromatin states on the introduced alphoid DNA is important for HAC formation. To obtain information about the relationship between chromatin architecture and de novo HAC formation efficiency, we tested combinations of two 60-kb synthetic alphoid sequences containing either tetO or lacO plus a functional or mutated CENP-B box combined with a multiple fusion protein tethering system. The combination of mutated and wild-type CENP-B box alphoid repeats significantly enhanced HAC formation. Both CENP-A and HP1α were enriched in the wild-type alphoid DNA, whereas H3K27me3 was enriched on the mutant alphoid array. The presence or absence of CENP-B binding resulted in differences in the assembly of CENP-A chromatin on alphoid arrays and the formation of H3K9me3 or H3K27me3 heterochromatin.


Assuntos
Proteína B de Centrômero , Cromossomos Artificiais Humanos , Proteína Centromérica A/genética , Proteína B de Centrômero/genética , Cromatina , DNA , Heterocromatina , Histonas/metabolismo , Humanos
3.
Neuropathology ; 42(1): 3-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34519373

RESUMO

Radiotherapy represents the most effective nonsurgical therapy, whereas acquired radioresistance remains a major challenge in glioma treatment. Deregulation of long noncoding RNAs (lncRNAs) is frequently involved in tumorigenesis. This study investigates the role of LINC01123 in radioresistance in glioma with molecules involved. LINC01123 was identified as the most upregulated gene in a glioma gene expression dataset GSE103227. LINC01123 was highly expressed in the radioresistant glioma tissues radioresistant glioma U251 (U251R) cells. Downregulation of LINC01123 reduced cell proliferation and colony formation abilities, as well as resistance to apoptosis of the U251R cells after 4 Gy X-ray irradiation. The micro(mi)RNA-151a gene (miR-151a) was a poorly expressed miRNA in glioma, and it was a target of LINC01123. The centromere protein B gene (CENPB) mRNA was a direct target of miR-151a and demonstrated a positive correlation with LINC01123 in glioma tissues and cells. Further inhibition of miR-151a or overexpression of CENPB restored radioresistance of glioma cells. In addition, silencing of LINC01123 suppressed growth of xenograft tumors formed by U251R cells in nude mice. To conclude, the present study demonstrates that LINC01123 serves as a sponge for miR-151a and upregulates CENPB expression to increase the radioresistance of glioma cells in vitro and in vivo.


Assuntos
Proteína B de Centrômero/genética , Glioma , MicroRNAs , RNA Longo não Codificante/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/radioterapia , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias
4.
J Biol Chem ; 297(4): 101213, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547289

RESUMO

The centromere is a chromosomal locus that is essential for the accurate segregation of chromosomes during cell division. Transcription of noncoding RNA (ncRNA) at the centromere plays a crucial role in centromere function. The zinc-finger transcriptional regulator ZFAT binds to a specific 8-bp DNA sequence at the centromere, named the ZFAT box, to control ncRNA transcription. However, the precise molecular mechanisms by which ZFAT localizes to the centromere remain elusive. Here we show that the centromeric protein CENP-B is required for the centromeric localization of ZFAT to regulate ncRNA transcription. The ectopic expression of CENP-B induces the accumulation of both endogenous and ectopically expressed ZFAT protein at the centromere in human cells, suggesting that the centromeric localization of ZFAT requires the presence of CENP-B. Coimmunoprecipitation analysis reveals that ZFAT interacts with the acidic domain of CENP-B, and depletion of endogenous CENP-B reduces the centromeric levels of ZFAT protein, further supporting that CENP-B is required for the centromeric localization of ZFAT. In addition, knockdown of CENP-B significantly decreased the expression levels of ncRNA at the centromere where ZFAT regulates the transcription, suggesting that CENP-B is involved in the ZFAT-regulated centromeric ncRNA transcription. Thus, we concluded that CENP-B contributes to the establishment of the centromeric localization of ZFAT to regulate ncRNA transcription.


Assuntos
Proteína B de Centrômero/metabolismo , Centrômero/metabolismo , RNA não Traduzido/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Centrômero/genética , Proteína B de Centrômero/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , RNA não Traduzido/genética , Fatores de Transcrição/genética
5.
Mol Biol Evol ; 38(12): 5576-5587, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34464971

RESUMO

Human centromeres are mainly composed of alpha satellite DNA hierarchically organized as higher-order repeats (HORs). Alpha satellite dynamics is shown by sequence homogenization in centromeric arrays and by its transfer to other centromeric locations, for example, during the maturation of new centromeres. We identified during prenatal aneuploidy diagnosis by fluorescent in situ hybridization a de novo insertion of alpha satellite DNA from the centromere of chromosome 18 (D18Z1) into cytoband 15q26. Although bound by CENP-B, this locus did not acquire centromeric functionality as demonstrated by the lack of constriction and the absence of CENP-A binding. The insertion was associated with a 2.8-kbp deletion and likely occurred in the paternal germline. The site was enriched in long terminal repeats and located ∼10 Mbp from the location where a centromere was ancestrally seeded and became inactive in the common ancestor of humans and apes 20-25 million years ago. Long-read mapping to the T2T-CHM13 human genome assembly revealed that the insertion derives from a specific region of chromosome 18 centromeric 12-mer HOR array in which the monomer size follows a regular pattern. The rearrangement did not directly disrupt any gene or predicted regulatory element and did not alter the methylation status of the surrounding region, consistent with the absence of phenotypic consequences in the carrier. This case demonstrates a likely rare but new class of structural variation that we name "alpha satellite insertion." It also expands our knowledge on alphoid DNA dynamics and conveys the possibility that alphoid arrays can relocate near vestigial centromeric sites.


Assuntos
Centrômero , Proteínas Cromossômicas não Histona , Centrômero/genética , Centrômero/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Satélite/genética , Humanos , Hibridização in Situ Fluorescente
6.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881484

RESUMO

Centromeric transcription has been shown to play an important role in centromere functions. However, lack of approaches to specifically manipulate centromeric transcription calls into question that the proposed functions are a direct consequence of centromeric transcription. By monitoring nascent RNAs, we found that several transcriptional inhibitors exhibited distinct, even opposing, efficacies on the suppression of ongoing gene and centromeric transcription in human cells, whereas under the same conditions, total centromeric RNAs were changed to a lesser extent. The inhibitor suppressing ongoing centromeric transcription weakened centromeric cohesion, whereas the inhibitor increasing ongoing centromeric transcription strengthened centromeric cohesion. Furthermore, expression of CENP-B DNA-binding domain or CENP-B knockdown moderately increased centromeric transcription without altering gene transcription; as a result, centromeric cohesion was accordingly strengthened. Targeting of the Kox1-KRAB domain with CENP-B DB to centromeres specifically decreased centromeric transcription and weakened centromeric cohesion. Thus, based on these findings, we propose that a major function of centromeric transcription is to maintain centromeric cohesion in human cells.


Assuntos
Proteína B de Centrômero/genética , Centrômero/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , Transcrição Gênica , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Histonas/genética , Humanos , Mitose/genética , Ligação Proteica/genética
7.
Mol Microbiol ; 116(1): 140-153, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561892

RESUMO

The essential transcription factor PoxCxrA is required for cellulase and xylanase gene expression in the filamentous fungus Penicillium oxalicum that is potentially applied in biotechnological industry as a result of the existence of the integrated cellulolytic and xylolytic system. However, the regulatory mechanism of cellulase and xylanase gene expression specifically associated with PoxCxrA regulation in fungi is poorly understood. In this study, the novel regulator PoxCbh (POX06865), containing a centromere protein B-type helix-turn-helix domain, was identified through screening for the PoxCxrA regulon under Avicel induction and genetic analysis. The mutant ∆PoxCbh showed significant reduction in cellulase and xylanase production, ranging from 28.4% to 59.8%. Furthermore, PoxCbh was found to directly regulate the expression of important cellulase and xylanase genes, as well as the known regulatory genes PoxNsdD and POX02484, and its expression was directly controlled by PoxCxrA. The PoxCbh-binding DNA sequence in the promoter region of the cellobiohydrolase 1 gene cbh1 was identified. These results expand our understanding of the diverse roles of centromere protein B-like protein, the regulatory network of cellulase and xylanase gene expression, and regulatory mechanisms in fungi.


Assuntos
Proteína B de Centrômero/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação Fúngica da Expressão Gênica/genética , Sequências Hélice-Volta-Hélice/genética , Penicillium/genética , Penicillium/metabolismo , Celulase/biossíntese , Celulase/genética , Celulose 1,4-beta-Celobiosidase/genética , Proteína B de Centrômero/biossíntese , Proteínas Cromossômicas não Histona/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Fatores de Transcrição/genética
8.
J Mol Biol ; 433(6): 166676, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33065112

RESUMO

The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.


Assuntos
Proteína Centromérica A/química , Proteína B de Centrômero/química , Centrômero/ultraestrutura , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/química , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Humanos , Mitose , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
ACS Synth Biol ; 9(12): 3267-3287, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33289546

RESUMO

Human artificial chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN), and for possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.


Assuntos
Cromossomos Artificiais Humanos/metabolismo , Rearranjo Gênico/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteína B de Centrômero/genética , Instabilidade Cromossômica , Epigênese Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos
10.
Exp Cell Res ; 390(2): 111959, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32173469

RESUMO

The centromere is the nucleoproteic chromosomal structure necessary for accurate chromosome segregation during cell division. One of the earliest centromeric proteins to be discovered was CENP-B, the only one capable of recognizing a specific centromeric DNA binding motif. The phylogenetic history of this protein and of its DNA binding site shows independent events of function acquisition across different species and raises questions on the evolutionary dynamics of CENP-B, including what may be the selective advantage provided by its role at the centromere. Recent results have provided insight into potential functions of CENP-B in chromosome dynamics, however, its function is still object of debate. The recurrent appearance of CENP-B centromeric activity along phylogenesis, together with its dispensability, represent strictly intertwined facets of this controversy. This chapter focuses on the evolution, function and homeostasis of CENP-B and its importance in centromere biology.


Assuntos
Proteína B de Centrômero/genética , Centrômero/metabolismo , DNA/genética , Eucariotos/genética , Evolução Molecular , Animais , Sítios de Ligação , Divisão Celular , Centrômero/ultraestrutura , Proteína B de Centrômero/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Eucariotos/classificação , Eucariotos/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Expressão Gênica , Humanos , Motivos de Nucleotídeos , Filogenia , Ligação Proteica
11.
Exp Cell Res ; 389(2): 111900, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044309

RESUMO

The centromere is a specialized chromosomal locus required for accurate chromosome segregation. Heterochromatin also assembles around centromere chromatin and forms a base that supports sister chromatid cohesion until anaphase begins. Both centromere chromatin and heterochromatin assemble on a centromeric DNA sequence, a highly repetitive sequence called alphoid DNA (α-satellite DNA) in humans. Alphoid DNA can form a de novo centromere and subsequent human artificial chromosome (HAC) when introduced into the human culture cells HT1080. HAC is maintained stably as a single chromosome independent of other human chromosomes. For de novo centromere assembly and HAC formation, the centromere protein CENP-B and its binding sites, CENP-B boxes, are required in the repeating units of alphoid DNA. CENP-B has multiple roles in de novo centromere chromatin assembly and stabilization and in heterochromatin formation upon alphoid DNA introduction into the cells. Here we review recent progress in human artificial chromosome construction and centromere/heterochromatin assembly and maintenance, focusing on the involvement of human centromere DNA and CENP-B protein.


Assuntos
Proteína B de Centrômero/metabolismo , Centrômero/genética , Montagem e Desmontagem da Cromatina , Segregação de Cromossomos , Cromossomos Artificiais Humanos , DNA Satélite/genética , Proteína B de Centrômero/genética , Epigênese Genética , Humanos
12.
Cell ; 178(3): 624-639.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348889

RESUMO

Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.


Assuntos
Centrômero/metabolismo , Cromossomos Artificiais Humanos/metabolismo , DNA Satélite/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Centrômero/genética , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteína B de Centrômero/deficiência , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Epigênese Genética , Humanos , Nucleossomos/química , Nucleossomos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
13.
Epigenetics Chromatin ; 11(1): 68, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445992

RESUMO

BACKGROUND: The centromere is a specialized chromosomal locus that forms the basis for the assembly of a multi-protein complex, the kinetochore and ensures faithful chromosome segregation during every cell division. The repetitive nature of the underlying centromeric sequence represents a major obstacle for high-resolution mapping of protein binding using methods that rely on annotated genomes. Here, we present a novel microscopy-based approach called "APEX-chromatin fibers" for localizing protein binding over the repetitive centromeric sequences at kilobase resolution. RESULTS: By fusing centromere factors of interest to ascorbate peroxidase, we were able to label their binding profiles on extended chromatin fibers with biotin marks. We applied APEX-chromatin fibers to at least one member of each CCAN complex, most of which show a localization pattern different from CENP-A but within the CENP-A delineated centromeric domain. Interestingly, we describe here a novel characteristic of CENP-I and CENP-B that display extended localization beyond the CENP-A boundaries. CONCLUSIONS: Our approach was successfully applied for mapping protein association over centromeric chromatin, revealing previously undescribed localization patterns. In this study, we focused on centromeric factors, but we believe that this approach could be useful for mapping protein binding patterns in other repetitive regions.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento de Interação de Proteínas/métodos , Biotina/química , Linhagem Celular , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
ACS Synth Biol ; 7(9): 1974-1989, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30075081

RESUMO

Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.


Assuntos
Centrômero/metabolismo , Cromossomos Artificiais Humanos/genética , Neoplasias/patologia , Animais , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Instabilidade Cromossômica , Cromossomos Artificiais Humanos/metabolismo , Técnicas de Transferência de Genes , Histonas/metabolismo , Humanos , Neoplasias/genética
15.
Sci Rep ; 8(1): 10930, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026545

RESUMO

The mechanism by which specific protein-DNA complexes induce programmed replication fork stalling in the eukaryotic genome remains poorly understood. In order to shed light on this process we carried out structural investigations on the essential fission yeast protein Sap1. Sap1 was identified as a protein involved in mating-type switching in Schizosaccharomyces pombe, and has been shown to be involved in programmed replication fork stalling. Interestingly, Sap1 assumes two different DNA binding modes. At the mating-type locus dimers of Sap1 bind the SAS1 sequence in a head-to-head arrangement, while they bind to replication fork blocking sites at rDNA and Tf2 transposons in a head-to-tail mode. In this study, we have solved the crystal structure of the Sap1 DNA binding domain and we observe that Sap1 molecules interact in the crystal using a head-to-tail arrangement that is compatible with DNA binding. We find that Sap1 mutations which alleviate replication-fork blockage at Tf2 transposons in CENP-B mutants map to the head-to-tail interface. Furthermore, several other mutations introduced in this interface are found to be lethal. Our data suggests that essential functions of Sap1 depend on its head-to-tail oligomerization.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Sítios de Ligação , Proteína B de Centrômero/genética , Cristalografia por Raios X , Replicação do DNA , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
16.
ACS Synth Biol ; 7(4): 1116-1130, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29565577

RESUMO

It is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity. However, the pathways leading to the formation and maintenance of centromere chromatin remain poorly characterized due to difficulties of analysis of centromeric repeats in native chromosomes. To address this problem, in our previous studies we generated a human artificial chromosome (HAC) whose centromere contains a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator, the alphoidtetO-HAC. The presence of tetO sequences allows the specific targeting of the centromeric region in the HAC with different chromatin modifiers fused to the tetracycline repressor. The alphoidtetO-HAC has been extensively used to investigate protein interactions within the kinetochore and to define the epigenetic signature of centromeric chromatin to maintain a functional kinetochore. In this study, we developed a novel synthetic HAC containing two alphoid DNA arrays with different targeting sequences, tetO, lacO and gal4, the alphoidhybrid-HAC. This new HAC can be used for detailed epigenetic engineering studies because its kinetochore can be simultaneously or independently targeted by different chromatin modifiers and other fusion proteins.


Assuntos
Centrômero/genética , Cromossomos Artificiais Humanos/genética , Epigênese Genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Linhagem Celular , Proteína Centromérica A/genética , Proteína B de Centrômero/genética , Segregação de Cromossomos , Clonagem Molecular , DNA Satélite , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
17.
PLoS Genet ; 13(7): e1006870, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708826

RESUMO

Wnt/ß-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The ß-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.


Assuntos
Proteína B de Centrômero/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Neoplasias/genética , Neuropeptídeos/genética , Proteínas Nucleares/biossíntese , Fatores de Transcrição/genética , Animais , Carcinogênese/genética , Proliferação de Células/genética , Proteína B de Centrômero/biossíntese , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteínas de Drosophila/biossíntese , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Intestinos/crescimento & desenvolvimento , Neoplasias/patologia , Neuropeptídeos/biossíntese , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Células-Tronco/metabolismo , Fatores de Transcrição/biossíntese , Via de Sinalização Wnt/genética
18.
J Proteome Res ; 16(9): 3433-3442, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28704058

RESUMO

The centromere is the chromosomal locus where the kinetochore forms and is critical for ensuring proper segregation of sister chromatids during cell division. A substantial amount of effort has been devoted to understanding the characteristic features and roles of the centromere, yet some fundamental aspects of the centromere, such as the complete list of elements that define it, remain obscure. It is well-known that human centromeres include a highly repetitive class of DNA known as alpha satellite, or alphoid, DNA. We present here the first DNA-centric examination of human protein-alpha satellite interactions, employing an approach known as HyCCAPP (hybridization capture of chromatin-associated proteins for proteomics) to identify the protein components of alphoid chromatin in a human cell line. Using HyCCAPP, cross-linked alpha satellite chromatin was isolated from cell lysate, and captured proteins were analyzed via mass spectrometry. After being compared to proteins identified in control pulldown experiments, 90 proteins were identified as enriched at alphoid DNA. This list included many known centromere-binding proteins in addition to multiple novel alpha satellite-binding proteins, such as LRIF1, a heterochromatin-associated protein. The ability of HyCCAPP to reveal both known as well as novel alphoid DNA-interacting proteins highlights the validity and utility of this approach.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Hibridização in Situ Fluorescente/métodos , Anticorpos Monoclonais/química , Centrômero/ultraestrutura , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Cromatina/ultraestrutura , Imunoprecipitação da Cromatina , DNA/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Humanos , Células K562 , Espectrometria de Massas/métodos
19.
Mol Med Rep ; 15(4): 2313-2317, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28259924

RESUMO

The centromere is responsible for the correct inheritance of eukaryotic chromosomes during cell division. Centromere protein B (CENP­B) and its 17 base pair binding site (CENP­B box), which appears at regular intervals in centromeric α-satellite DNA (α-satDNA), are important for the assembly of the centromere components. Therefore, it is conceivable that CENP-B box mutations may induce errors in cell division. However, the association between the deoxynucleotide alterations of the CENP­B box and the extra chromosome 21 (Chr21) present in patients with Down syndrome (DS) remains to be elucidated. The mutational spectrum of the α­satDNA, including 4 functional CENP­B boxes in Chr21 from 127 DS and 100 healthy children were analyzed by direct sequencing. The de novo occurrences of mutations within CENP­B boxes in patients with DS were excluded. The prevalence of 6 novel mutations (g.661delC, g.1035_1036insA, g.1076_1077insC, g.670T>G, g.1239A>T, g.1343T>C) and 3 single nucleotide polymorphisms (g.727C/T, g.863A/C, g.1264C/G) were not significantly different between DS and controls (P>0.05). However, g.525C/G (P=0.01), g.601T/C (P=0.00000002), g.1279A/G (P=0.002), g.1294C/T (P=0.0006) and g.1302 G/T (P=0.004) were significantly associated with the prevalence of DS (P<0.05). The results indicated that CENP­B boxes are highly conserved in DS patients and may not be responsible for Chr21 nondisjunction events. However, α­satDNA in Chr21 is variable and deoxynucleotide deletions, mutations and polymorphisms may act as potential molecular diagnostic markers of DS.


Assuntos
Proteína B de Centrômero/genética , Cromossomos Humanos Par 21/genética , DNA Satélite/genética , Síndrome de Down/genética , Mutação , Sequência de Bases , Criança , China/epidemiologia , Análise Mutacional de DNA , Síndrome de Down/epidemiologia , Humanos , Polimorfismo Genético
20.
Genome Res ; 26(9): 1178-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27384170

RESUMO

Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein-protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers.


Assuntos
Proteína Centromérica A/genética , Proteína B de Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Linhagem Celular , Centrômero/genética , Cromatina/genética , DNA Satélite/genética , Humanos , Cinetocoros , Nucleossomos/genética , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...